Search results for "Triebel–Lizorkin space"

showing 7 items of 7 documents

Analytic Properties of Quasiconformal Mappings Between Metric Spaces

2012

We survey recent developments in the theory of quasiconformal mappings between metric spaces. We examine the various weak definitions of quasiconformality, and give conditions under which they are all equal and imply the strong classical properties of quasiconformal mappings in Euclidean spaces. We also discuss function spaces preserved by quasiconformal mappings.

Pure mathematicsQuasiconformal mappingMathematics::Dynamical SystemsExtremal lengthMathematics::Complex VariablesInjective metric spaceProduct metricTopologyTriebel–Lizorkin spaceConvex metric spaceMetric spaceComputer Science::GraphicsMetric mapMathematics
researchProduct

Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings

2011

Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.

Mathematics(all)Quasiconformal mappingPure mathematicsGeneral MathematicsGrand Besov spaceMetric measure spaceTriebel–Lizorkin spaceCharacterization (mathematics)Space (mathematics)Triebel–Lizorkin space01 natural sciencesMeasure (mathematics)Quasisymmetric mappingMorphism0101 mathematicsBesov spaceHajłasz–Besov spaceMathematicsPointwiseta111010102 general mathematicsGrand Triebel–Lizorkin spaceQuasiconformal mappingHajłasz–Triebel–Lizorkin space010101 applied mathematicsBesov spaceFractional Hajłasz gradientAdvances in Mathematics
researchProduct

Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces

2013

Motivated by the results of Korry, and Kinnunen and Saksman, we study the behaviour of the discrete fractional maximal operator on fractional Hajlasz spaces, Hajlasz-Besov, and Hajlasz-Triebel-Lizorkin spaces on metric measure spaces. We show that the discrete fractional maximal operator maps these spaces to the spaces of the same type with higher smoothness. Our results extend and unify aforementioned results. We present our results in a general setting, but they are new already in the Euclidean case.

Pure mathematicsGeneral MathematicsMetric measure spaceSpace (mathematics)Triebel–Lizorkin spaceMeasure (mathematics)Triebel-Lizorkin spaceFOS: Mathematics46E35Birnbaum–Orlicz spaceLp spaceBesov spacefractional Sobolev spaceMathematicsMathematics::Functional Analysista111Mathematical analysisFractional Sobolev spaceFunctional Analysis (math.FA)Fractional calculusMathematics - Functional Analysismetric measure space42B25 46E35fractional maximal functionBesov spaceInterpolation spaceFractional maximal function42B25
researchProduct

Hajłasz–Sobolev imbedding and extension

2011

Abstract The author establishes some geometric criteria for a Hajlasz–Sobolev M ˙ ball s , p -extension (resp. M ˙ ball s , p -imbedding) domain of R n with n ⩾ 2 , s ∈ ( 0 , 1 ] and p ∈ [ n / s , ∞ ] (resp. p ∈ ( n / s , ∞ ] ). In particular, the author proves that a bounded finitely connected planar domain Ω is a weak α -cigar domain with α ∈ ( 0 , 1 ) if and only if F ˙ p , ∞ s ( R 2 ) | Ω = M ˙ ball s , p ( Ω ) for some/all s ∈ [ α , 1 ) and p = ( 2 − α ) / ( s − α ) , where F ˙ p , ∞ s ( R 2 ) | Ω denotes the restriction of the Triebel–Lizorkin space F ˙ p , ∞ s ( R 2 ) on Ω .

Hajłasz–Sobolev extensionHajłasz–Sobolev imbeddingApplied Mathematics010102 general mathematicsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciencesSobolev spaceCombinatoricsHajłasz–Sobolev spaceUniform domainBounded function0103 physical sciencesWeak cigar domain010307 mathematical physicsBall (mathematics)Local linear connectivity0101 mathematicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Bounded compositions on scaling invariant Besov spaces

2012

For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.

Mathematics::Functional AnalysisQuasiconformal mappingPure mathematics46E35 30C65 47B33Function spaceComposition operator010102 general mathematicsta11116. Peace & justiceTriebel–Lizorkin space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsBesov space010307 mathematical physics0101 mathematicsInvariant (mathematics)ScalingAnalysisMathematicsJournal of Functional Analysis
researchProduct

A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions

2010

Abstract In this paper, we establish the equivalence between the Hajlasz–Sobolev spaces or classical Triebel–Lizorkin spaces and a class of grand Triebel–Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p ∈ ( n / ( n + 1 ) , ∞ ) , we give a new characterization of the Hajlasz–Sobolev spaces M ˙ 1 , p ( R n ) via a grand Littlewood–Paley function.

Calderón reproducing formulaMathematics::Functional AnalysisPure mathematicsTopological tensor product010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciences010101 applied mathematicsUniform continuityFréchet spaceSobolev spacesInterpolation spaceBesov spaceBirnbaum–Orlicz space0101 mathematicsLp spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct

Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions

2016

We show that, for $0<s<1$, $0<p<\infty$, $0<q<\infty$, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, \[ \lim_{r\to 0}m_u^\gamma(B(x,r))=u^*(x), \] exists quasieverywhere and defines a quasicontinuous representative of $u$. The above limit exists quasieverywhere also for Haj\l asz functions $u\in M^{s,p}$, $0<s\le 1$, $0<p<\infty$, but approximation of $u$ in $M^{s,p}$ by discrete (median) convolutions is not in general possible.

Applied MathematicsGeneral Mathematicsmedian010102 general mathematicsMathematical analysista111QuasicontinuityMedianMetric measure space010103 numerical & computational mathematicsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciencesFractional Sobolev spaceCombinatoricsmetric measure spaceBesov spacequasicontinuityLimit (mathematics)0101 mathematicsBesov spacefractional Sobolev spaceMathematicsTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
researchProduct