Search results for "Triebel–Lizorkin space"
showing 7 items of 7 documents
Analytic Properties of Quasiconformal Mappings Between Metric Spaces
2012
We survey recent developments in the theory of quasiconformal mappings between metric spaces. We examine the various weak definitions of quasiconformality, and give conditions under which they are all equal and imply the strong classical properties of quasiconformal mappings in Euclidean spaces. We also discuss function spaces preserved by quasiconformal mappings.
Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings
2011
Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.
Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces
2013
Motivated by the results of Korry, and Kinnunen and Saksman, we study the behaviour of the discrete fractional maximal operator on fractional Hajlasz spaces, Hajlasz-Besov, and Hajlasz-Triebel-Lizorkin spaces on metric measure spaces. We show that the discrete fractional maximal operator maps these spaces to the spaces of the same type with higher smoothness. Our results extend and unify aforementioned results. We present our results in a general setting, but they are new already in the Euclidean case.
Hajłasz–Sobolev imbedding and extension
2011
Abstract The author establishes some geometric criteria for a Hajlasz–Sobolev M ˙ ball s , p -extension (resp. M ˙ ball s , p -imbedding) domain of R n with n ⩾ 2 , s ∈ ( 0 , 1 ] and p ∈ [ n / s , ∞ ] (resp. p ∈ ( n / s , ∞ ] ). In particular, the author proves that a bounded finitely connected planar domain Ω is a weak α -cigar domain with α ∈ ( 0 , 1 ) if and only if F ˙ p , ∞ s ( R 2 ) | Ω = M ˙ ball s , p ( Ω ) for some/all s ∈ [ α , 1 ) and p = ( 2 − α ) / ( s − α ) , where F ˙ p , ∞ s ( R 2 ) | Ω denotes the restriction of the Triebel–Lizorkin space F ˙ p , ∞ s ( R 2 ) on Ω .
Bounded compositions on scaling invariant Besov spaces
2012
For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.
A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions
2010
Abstract In this paper, we establish the equivalence between the Hajlasz–Sobolev spaces or classical Triebel–Lizorkin spaces and a class of grand Triebel–Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p ∈ ( n / ( n + 1 ) , ∞ ) , we give a new characterization of the Hajlasz–Sobolev spaces M ˙ 1 , p ( R n ) via a grand Littlewood–Paley function.
Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions
2016
We show that, for $0<s<1$, $0<p<\infty$, $0<q<\infty$, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, \[ \lim_{r\to 0}m_u^\gamma(B(x,r))=u^*(x), \] exists quasieverywhere and defines a quasicontinuous representative of $u$. The above limit exists quasieverywhere also for Haj\l asz functions $u\in M^{s,p}$, $0<s\le 1$, $0<p<\infty$, but approximation of $u$ in $M^{s,p}$ by discrete (median) convolutions is not in general possible.